Low-Rank Tensor Completion with Spatio-Temporal Consistency

نویسندگان

  • Hua Wang
  • Feiping Nie
  • Heng Huang
چکیده

Video completion is a computer vision technique to recover the missing values in video sequences by filling the unknown regions with the known information. In recent research, tensor completion, a generalization of matrix completion for higher order data, emerges as a new solution to estimate the missing information in video with the assumption that the video frames are homogenous and correlated. However, each video clip often stores the heterogeneous episodes and the correlations among all video frames are not high. Thus, the regular tenor completion methods are not suitable to recover the video missing values in practical applications. To solve this problem, we propose a novel spatiallytemporally consistent tensor completion method for recovering the video missing data. Instead of minimizing the average of the trace norms of all matrices unfolded along each mode of a tensor data, we introduce a new smoothness regularization along video time direction to utilize the temporal information between consecutive video frames. Meanwhile, we also minimize the trace norm of each individual video frame to employ the spatial correlations among pixels. Different to previous tensor completion approaches, our new method can keep the spatio-temporal consistency in video and do not assume the global correlation in video frames. Thus, the proposed method can be applied to the general and practical video completion applications. Our method shows promising results in all evaluations on both 3D biomedical image sequence and video benchmark data sets. Video completion is the process of filling in missing pixels or replacing undesirable pixels in a video. The missing values in a video can be caused by many situations, e.g., the natural noise in video capture equipment, the occlusion from the obstacles in environment, segmenting or removing interested objects from videos. Video completion is of great importance to many applications such as video repairing and editing, movie post-production (e.g., remove unwanted objects), etc. Missing information recovery in images is called inpaint∗To whom all correspondence should be addressed. This work was partially supported by US NSF IIS-1117965, IIS-1302675, IIS-1344152. Copyright c © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. ing, which is usually accomplished by inferring or guessing the missing information from the surrounding regions, i.e. the spatial information. Video completion can be considered as an extension of 2D image inpainting to 3D. Video completion uses the information from the past and the future frames to fill the pixels in the missing region, i.e. the spatiotemporal information, which has been getting increasing attention in recent years. In computer vision, an important application area of artificial intelligence, there are many video completion algorithms. The most representative approaches include video inpainting, analogous to image inpainting (Bertalmio, Bertozzi, and Sapiro 2001), motion layer video completion, which splits the video sequence into different motion layers and completes each motion layer separately (Shiratori et al. 2006), space-time video completion, which is based on texture synthesis and is good but slow (Wexler, Shechtman, and Irani 2004), and video repairing, which repairs static background with motion layers and repairs moving foreground using model alignment (Jia et al. 2004). Many video completion methods are less effective because the video is often treated as a set of independent 2D images. Although the temporal independence assumption simplifies the problem, losing temporal consistency in recovered pixels leads to the unsatisfactory performance. On the other hand, temporal information can improve the video completion results (Wexler, Shechtman, and Irani 2004; Matsushita et al. 2005), but to exploit it the computational speeds of most methods are significantly reduced. Thus, how to efficiently and effectively utilize both spatial and temporal information is a challenging problem in video completion. In most recent work, Liu et. al. (Liu et al. 2013) estimated the missing data in video via tensor completion which was generalized from matrix completion methods. In these methods, the rank or rank approximation (trace norm) is used, as a powerful tool, to capture the global information. The tensor completion method (Liu et al. 2013) minimizes the trace norm of a tensor, i.e. the average of the trace norms of all matrices unfolded along each mode. Thus, it assumes the video frames are highly correlated in the temporal direction. If the video records homogenous episodes and all frames describe the similar information, this assumption has no problem. However, one video clip usually includes multiple different episodes and the frames from different episodes Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach

 Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...

متن کامل

Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning

Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate diffe...

متن کامل

Beyond Low Rank: A Data-Adaptive Tensor Completion Method

Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explici...

متن کامل

Spatio-Temporal Tensor Completion for Estimating Missing Internet Traffic Data

Network traffic data consists of Traffic Matrix (TM), which represents the volumes of traffic between Origin and Destination (OD) pairs in the network. It is a key input parameter of network engineering tasks. However, direct measurement of the OD pairs traffic is usually not feasible. Even good traffic measurement systems can suffer from errors, missing data. So obtaining the ODs traffic preci...

متن کامل

Accelerated Online Low Rank Tensor Learning for Multivariate Spatiotemporal Streams

Low-rank tensor learning has many applications in machine learning. A series of batch learning algorithms have achieved great successes. However, in many emerging applications, such as climate data analysis, we are confronted with largescale tensor streams, which pose significant challenges to existing solutions. In this paper, we propose an accelerated online low-rank tensor learning algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014